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Abstract The region of Bhutan is thought to be the only segment of the Himalayas not having
experienced a major earthquake over the past half millennium. A proposed explanation for this apparent
seismic gap is partial accommodation of the India-Asia convergence further south across the Shillong
Plateau, yet the seismic behavior of the Himalayan megathrust in Bhutan is unknown. Here we present
historical documents from the region reporting on an earthquake in 1714 A.D. and geological evidence of
surface rupture to constrain the latest large event in this area. We compute various earthquake scenarios
using empirical scaling relationships relating magnitude with intensity, source location and rupture
geometry. Our results constrain the 1714A.D. earthquake to have ruptured the megathrust in Bhutan, most
likely during a M7.5–8.5 event. This finding reclassifies the apparent seismic gap to a former information gap
and implies that the entire Himalayan arc has a high level of earthquake potential.

1. Introduction

Where and how often large earthquakes occur is a key question to better understand the earthquake cycle,
especially in the densely populated Himalayan region (Figure 1). This mountain belt is known to have pro-
duced large earthquakes not only in the era of modern instrumental seismology but also in historical times
[Avouac et al., 2001; Bilham and England, 2001; Bilham, 2009; Kumar et al., 2010; Sapkota et al., 2012;
Mugnier et al., 2013; Berthet et al., 2014; Bollinger et al., 2014; Le Roux-Mallouf et al., 2016] (Figure 1). The orogen
segments in between these earthquakes’ rupture areas are commonly referred to as seismic gaps, which can
be related to either a specific seismic behavior such as aseismic slip, or to lack of information. Contrary to the
segments where the megathrust is mechanically strongly coupled and produces large earthquakes, we do
not have sufficient information about the strength of the coupling in these gaps. Geodetic measurements
provide a good insight on the mechanical coupling for the interseismic periods but are limited in time to
the past few decades [Ader et al., 2012; Stevens and Avouac, 2015]. On the long term, seismic gaps could either
prove to be also very strongly coupled with a geologically imminent threat of a megaquake (meaning that
they were an information gap) or they could be weakly coupled and never produce a major event. In this case
aseismic slip or creep could take up smaller or larger parts of the accumulated shortening across the orogen.
To balance the deficit of moment derived from geodetic strain measurements in the Himalayas, large and
rare earthquakes have been proposed [Stevens and Avouac, 2016].

One of the most prominent apparent seismic gaps in the Himalayas is in its Eastern part, at the longitude
of Bhutan and Arunachal Pradesh to ~93.5°E (Figure 1). Here the largest known earthquake of the past
80 years is evaluated at magnitude 6.75 [Drukpa et al., 2006], and instrumental background seismicity is
also lower compared to the rest of the mountain belt [Gahalaut et al., 2011]. On the scale of several mil-
lennia, there is paleoseismological evidence for surface rupturing events at the front of the orogen
[Berthet et al., 2014; Le Roux-Mallouf et al., 2016]. However, at the intermediate historical time scale there
is no well-constrained evidence for big events. Two end-member scenarios are possible: either the Bhutan
Himalayas are strongly coupled or the deformation may be localized further south, at the Shillong Plateau,
uplifting since 9–15Ma [e.g., Biswas et al., 2007] and hosting a major M8.1 earthquake in 1897 [Bilham and
England, 2001]. However, geodetic measurements seem to indicate that shortening across the Bhutan
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Himalaya is 2.5–6 times higher than across the Shillong Plateau (based on Vernant et al. [2014] and refer-
ences therein) and is similar to the rest of the Himalaya [Stevens and Avouac, 2015].

2. Data

Here we present a way of using current empirical scaling relationships frommodern instrumental seismology
to constrain noninstrumental earthquake reports. We present five historical records describing a major eight-
eenth century earthquake (original sources are shown in Text S1 in the supporting information) and comple-
ment them with paleoseismological observations of surface rupture to constrain the event’s location and
magnitude (Figures 2–4).

A major earthquake in the area was already alluded to based on an eyewitness report by a 4 year old child and
some damage report in NE India [Rinchen, 1974; Ambraseys and Jackson, 2003]. However, its time (spring 1713),
location (Arunachal Pradesh), and magnitude (up to Ms7) remained speculative (Figure 4). The 4 year old child
reporting [Rinchen, 1974; Jackson, 2002], Shakya Rinchen, later became the chief abbot of the statemonastic body
of Bhutan, and his biography [Rinchen, 1974; Dorji, 2011] constrains the district, Wangdue Phodrang in west-
central Bhutan (Figures 2 and 4), where he experienced the earthquake. The wide destruction he describes
corresponds to intensities VII to VIII+ on themodifiedMercalli scale. The earthquake is alsomentioned in two later
works of the same author with confirmed effects in the adjacent Punakha and Thimphu valleys [Rinchen, 1974].

A recently reported biography of a famous temple builder adds further important constraints on the damage in
Bhutan [Phuntsho, 2013]. The newly built temple in Gangteng (Phobjikha valley; Figures 2 and 4) was almost
reducedtorubbles inanearthquakeon4May1714.Dependingontheconstructionquality,weassign intensities
betweenVII and IX to this damage report. Furthermore, about 30 aftershockswerenotedon thedayof themain
shock, and aftershocks continued for over a month, suggesting a major earthquake. The date (“the twentieth
day of the third month of the Wood Male Horse year”) is confirmed by another source written by the religious
ruler of Bhutanof that time,mentioning that even the young rulerwas forced to sleep in a tent [Namgyal, 1985].

We also identify the location of three sites in northeast India with reported damage [Bhuyan, 1933]: the village
of Tinkhong, the burial site at Charaideo Hill, and the village of Bahgara near today’s Garhgaon (Figures 2 and 4).
Gait [1906] confirms the damage to temples and the date of the earthquake by reporting that the earthquake
has struck not long before King Rudra Singh’s death in August 1714. The damage described in these reports
was evaluated earlier to intensity IV at least [Iyengar et al., 1999] and could easily have reached VI in our reading.

Figure 1. Great earthquakes in and near the Himalayas since 1500 A.D. The orange rupture areas of magnitude ~7.5 and
larger events are schematic and represent the published along-arc extent estimates [Avouac et al., 2001; Bilham and England,
2001;Bilham, 2009;Kumar et al., 2010;Berthet et al., 2014;Bollinger et al., 2014]. Possiblehypocenter loci of the1714 A.D. Bhutan
earthquakeasconstrained in this study is shown inyellow.Populationdensitydata fromCIESINandCIAT [2005].ArPr,Arunachal
Pradesh; Ktm, Kathmandu; S, Sikkim; SP, Shillong Plateau; and Th, Thimphu. Inset locates mainmap on the globe.
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We complement these five historical intensities with data from two paleoseismological sites [Berthet et al.,
2014; Le Roux-Mallouf et al., 2016] (Figures 2 and 4) in south-central Bhutan at the Main Frontal Thrust, the
surface trace of the megathrust (the Main Himalayan Thrust). Both sites reveal several meter long displace-
ments of geological units at the surface. Trenches dug at Sarpang (Figures 2 and 4) allow associating these

Figure 3. Various earthquake scenarios fitting damage and paleoseismology observations. Different rows correspond to the
different intensity predictionequations (equations (1)–(3)) as explained in the text; columns showminimummagnitude,M8.0,
and largemagnitude scenarios. The redarea represents hypocenter locationsfitting all observeddatapoints (black symbols).
Paleoseismological trenches showing no sign of surface rupture in the eighteenth century are shown as white circles.

Figure 2. Scenario of a M8.3 earthquake: the red area represents the hypocenter locations fitting all observed data points
(yellow symbols) using empirical models relating magnitude with intensity, rupture length, and rupture width. Yellow-to-
green colors represent areas with fit to decreasing number of data. Surface rupture observation: Sa, Sarpang, and Ge,
Gelephu. Intensity observations: WP, Wangdue Phodrang; Ga, Gangteng; Ba, Bahgara; Ch, Charaideo Hill; and Ti, Tinkhong.
Cities: Da, Darjeeling; Gu, Guwahati; Jo, Jorhat; Sh, Shillong; and Te, Tezpur.

Geophysical Research Letters 10.1002/2016GL071033
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with at least two great earthquakes, one during medieval times and a second between 1642 and
1836A.D. [Le Roux-Mallouf et al., 2016]. With up to 0.5m of vertical offset at this latest event, we assume
that the rupture at Sarpang and Gelephu occurred during the 1714 A.D. earthquake.

3. Method
3.1. General Approach

We test possible earthquake scenarios (hypocentral location and magnitude) to fit the above observations
(Figures 2 and 3) by combining different empirical scaling relations calibrated on modern earthquakes. To
match the estimated intensities, we use the intensity prediction equation (IPE) of Allen et al. [2012] defined
for active crustal regions and shallow events. In spite of the complexity of tectonic regime at hand, both cri-
teria are satisfied for a megathrust earthquake on the Main Himalayan Thrust, at depths of about 10–15 km in
Bhutan [e.g., Coutand et al., 2014, and references therein]. The locations of the surface ruptures are used as
constraints of the rupture extent, usingmagnitude� subsurface rupture length andmagnitude� rupture width
relations provided by Wells and Coppersmith [1994] for thrust faults. Although the fault offset could also be
used to constrain the magnitude, we refrain from this as the scaling relationships are well constrained mainly
for strike-slip faults [e.g., Biasi and Weldon, 2006] but not for thrusts [Wells and Coppersmith, 1994]. We also
decide not to compute finite size rupture models as we consider that our data cannot constrain such models
in a physically meaningful way. To support this decision, we compare intensities observed following the 2015
Gorkha earthquake with IPEs using various distance metrics (for details we refer to Text S2 and Figure S5),
based on which we believe that the use of a point source model is fairly reasonable for the event at hand.
The approach we adopt is detailed in the following paragraphs.

3.2. Intensity Prediction Equations

We use the intensity prediction equations of Allen et al. [2012] to compare observed intensities with earth-
quake scenarios based on different magnitudes and locations in the study area. We primarily use the

Figure 4. Observations andmodel results related to the 1714 A.D. Bhutan earthquake of magnitude 8 ± 0.5. Surface rupture
information from paleoseismological and morphotectonic studies: Sa, Sarpang, and Ge, Gelephu [Berthet et al., 2014;
Le Roux-Mallouf et al., 2016], sites with no observed eighteenth century surface rupture according to Kumar et al. [2010] and
Mishra et al. [2016]. Intensity observations are described in the text and in Text S1: WP, Wangdue Phodrang; Ga, Gangteng;
Ba, Bahgara; Ch, Charaideo Hill; and Ti, Tinkhong. Possible loci of hypocenters as constrained here are shown for the M7.5,
M8.0, andM8.3 scenarios using equation (1). Gray star and circle, respectively, indicate the location of the earthquake and of
the intensity observations as initially referred to by Ambraseys and Jackson [2003]. Major thrust faults (in brown) from Styron
et al. [2010]: MFT, Main Frontal Thrust; pOF, proposed Oldham Fault; and DF, Dauki Fault. Cities: Da, Darjeeling; Gu,
Guwahati; Jo, Jorhat; Sh, Shillong; and Te, Tezpur.
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equation for expected intensity I as a function of hypocentral distance to the earthquake focus Rhyp and
magnitude M:

I M; Rhyp
� � ¼ c0 þ c1Mþ c2ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2hyp þ R2M

q
þ S for R ≤ 50 km; and

I M; Rhyp
� � ¼ c0 þ c1Mþ c2ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2hyp þ R2M

q
þ c4ln Rhyp=50

� �þ S for R>50 km; with

RM ¼ m1 þm2e M�5ð Þ;

(1)

with S being a site amplification factor and coefficients c andm determined by regression on a large number
of earthquake intensity observations worldwide (c0 = 2.085, c1 = 1.428, c2 =�1.402, c4 = 0.078, m1 =�0.209,
and m2 = 2.042). The site factor allows taking into account ground-shaking amplifications due to sediments.
Due to the lack of detailed information we first assumed S= 0. Later we tested the alternative scenario with
S= 1, a rather high value, for sites in NE India (see below). In this exercise we need to extrapolate the above
IPE to distances beyond 300 km and magnitudes above 7.9 (i.e., the calibration limits evoked in Allen et al.
[2012]). We believe that the general scaling and attenuation expressed by the equations hold within themag-
nitude and distance range of interest to the present study. This is further supported by the comparisons
shown in Text S2.

As an alternative to the above IPE we also compute scenarios using Allen et al.’s [2012] equations for closest
distance to the rupture Rrup:

I M; Rrup
� � ¼ c0 þ c1Mþ c2ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2rup þ 1þ c3e M�5ð Þ½ �2

q
þ S; (2)

with coefficients determined as above (c0 = 3.950, c1 = 0.913, c2 =�1.107, and c3 = 0.813). This equation
allows to obtain an alternative minimum magnitude estimate scenario, i.e., the lowest magnitude event for
which any rupture geometry is certainly within Rrup for all observation points (see below). Scenarios for larger
events are not computed using this relationship as that would require assumptions about a finite size rupture,
which we avoid for reasons explained above.

A third IPE we have tested was calibrated in the Himalaya [Szeliga et al., 2010], although only one of the cali-
bration events occurred in NE India:

I M; Rhyp
� � ¼ aþ bMþ cRhyp þ dlog10Rhyp; (3)

where coefficients were inverted for on characteristic events’ data (a= 6.05, b=1.11, c=�0.0006, and
d=�3.91). This IPE provides a set of independent estimates from those based on the equations by Allen
et al. [2012]. Equations (1) and (3), both based on Rhyp, agree within one intensity unit for the magnitude
and distance range considered in our study.

To match the damage observations as reported by the historical sources, the intensity calculated by the
employed IPE should fall within the intensity range of each data point.

3.3. Magnitude-Rupture Geometry Relation

The possible location and magnitude of the earthquake is also constrained based on the two paleoseismolo-
gical sites and equations relating characteristic subsurface rupture length�magnitude and rupture
width�magnitude [Wells and Coppersmith, 1994]. We do not use their equations on surface displacement
as neither our observations nor the published empirical relationships are well constrained. We calculate rup-
ture length at depth RLD and rupture width RW using

log10 RLD ¼ a1 þ b1M (4)

log10 RW ¼ a2 þ b2M (5)

where coefficients a and b are determined by regression to fit earthquake data on reverse faults (a1 =�2.42,
b1 = 0.58, a2 =�1.61, and b2 = 0.41). We apply these laws for magnitudes above 7.6 as well (limit evoked in
Wells and Coppersmith [1994]), as we consider that the general tendency expressed by the equations holds.

The thus calculated values constrain the possible location of the hypocenter in two ways: (1) the distance
between the earthquake and the observed surface rupture should be less than RLD, and (2) the distance
between the earthquake and the surface trace of the Main Himalayan Thrust, where surface rupture was
observed, should be less than RW. Initially, we assume that the earthquake occurs on the Main Himalayan
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Thrust, i.e., to thenorthof the surface ruptureobservations. Laterwe test the scenariowith anearthquake to the
south and whether the Shillong Plateau could have been hosting this earthquake (see below and Figure S4).

3.4. Application

The above equations and constraints were implemented in a MatLab computer code and a grid search was
designed for various earthquake location and magnitude scenarios. The fit shown in these scenario maps
represents the number of data points matched by the above constraints (see examples in Figures S1–S3).

Our approach is a step forward in testing noninstrumental earthquake scenarios. Instead of using single-point
observations, some of whichmay be highly variable along the fault, we combine a variety of data in the frame
of a physical model to fit all data points. Although the distribution of events in nature inherently comprises
deviations from empirically determined averages, the application of scaling relations based onmodern earth-
quake data provide a comprehensive tool that allows to differentiate between possible and unlikely scenar-
ios. This approach may provide new constraints for other historical and paleo-earthquakes in the Himalayas
and in general (e.g., Japan, Turkey, and Longmen Shan).

4. Results and Interpretation

Our results constrain the 1714A.D. earthquake to have occurred on the megathrust in western and central
Bhutan (Figures 2–4), with plausible magnitudes ranging from 7.5 to 8.5 (Figures 3, 4). The shown contours
(Figure 4) outline the area of possible hypocenter locations and not that of the rupture extent. This zone of
possible locations, constrained between about longitude 88.8°E and 91.2°E is ~240 km long, typical for a
M8.3 thrust earthquake [Wells and Coppersmith, 1994]. This is not an intrinsic consequence of the used scaling
relations but a direct constraint of the distance to the two intensity reports in Bhutan. Rupture could of course
have propagated farther than the contoured zone of likely hypocenter location but at the surface only as far
as the location of other paleoseismological trenches in the area [Kumar et al., 2010;Mishra et al., 2016] with no
evidence for the 1714A.D. event (Figure 4). An earthquake rupturing the full length of the segment between
these observations in Sikkim and Arunachal Pradesh (Figure 4) could be as large as M8.65.

We test a number of alternative scenarios and the sensitivity of our model to the IPEs. There is no model solu-
tion locating the earthquake hypocenter near the point proposed by Ambraseys and Jackson [2003](Figure 4).
Similarly, no scenario fits our data points if all (or if only the Bhutanese) intensities were underestimated. If all
intensities are overestimated, i.e., extensive damage to buildings was due to very poor construction quality
(or the historical narration overemphasized the earthquake impacts), the magnitude of the earthquake is low-
ered to the 7.5–7.6 range but the location does not change. If local site effects at the northeast Indian loca-
tions would cause intensity amplification of 1 degree (a high value according to Allen et al. [2012]), the
magnitude is bound to the 7.5–8.0 range still at the same location. Scenarios with magnitudes lower than
7.5 cannot fit the intensity observations simultaneously. The use of an IPE based on closest distance to rup-
ture (equation (2)) requires a minimum magnitude of 7.9 (Figure 3). The use of a regional IPE (equation (3))
sets the minimum magnitude to 7.8 and can accommodate M8.5+ scenarios (Figure 3). Finally, the scenario
of the earthquake happening at the Shillong Plateau—although geologically implausible to have been able
to cause surface rupture on the Himalayan megathrust—cannot explain the observations (Figure S4).

The presented solution is robust because of the joint fit to different datasets, and it is not sensitively depen-
dent on the adopted scaling relations. The east-west extent of the zone of potential hypocenters is con-
strained by the intensity and paleoseismology observations, not by assumptions on rupture length scaling
laws. The rupture width scaling law simply controls the northward extent of the zone, which could extend
farther north than shown.

We therefore consider the main scenario: a major, magnitude 7.5–8.5 megathrust earthquake on the Main
Himalayan Thrust in Bhutan most plausible. This range of magnitudes is also compatible with the amount
and duration of reported aftershocks [Phuntsho, 2013]. Although the characteristics (rupture geometry and
intensity attenuation) of a given M~ 8 earthquake may naturally deviate from statistically determined
averages, our results seem not to contradict any known observation and seem to be credible for this 300 year
old event. The along-arc location and potential extent of the earthquake also conforms to the segmentation
of the Himalayas as revealed by arc-parallel gravity anomalies [Hetényi et al., 2016].

Geophysical Research Letters 10.1002/2016GL071033
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5. Conclusions

We performed computations using empirical scaling relationships calibrated on modern earthquakes to
explain historical intensity data and paleoseismologically determined surface ruptures in the Eastern
Himalayas. Our findings are broadly constrained but are as robust as possible for an early eighteenth cen-
tury event. The 1714 A.D. earthquake has ruptured the Himalayan megathrust at the longitude of Bhutan,
with a magnitude of approximately 8. This demonstrates that Bhutan should not be considered a seismic
gap, neither on the geological nor on the historical (and human) timescales. The low present-day seismic
activity can be related to a strongly coupled megathrust interface, which is able to produce large earth-
quakes in Bhutan in the future as well. This is corroborated by recent GPS results suggesting a fully locked
megathrust in western and central Bhutan and strain similar to the rest of the Himalayas [Marechal
et al., 2016].

Based on our findings, the proposed seismic gap in Bhutan turned out to be an information gap, one that very
likely exists in all collision and subduction zones. It is essential to cover these potential information gaps as
decades or a century of instrumental seismicity may neither be representative of the seismic cycle nor be a
sufficient base for seismic hazard assessment. Further analyses including documented historical events, espe-
cially with dated surface rupture, are needed to describe the full seismic cycle. In the Himalayan arc, western
Arunachal Pradesh (east of Bhutan and west of 93.5°E) represents the only segment with no known big event
(Figure 1) and the least constrained level of interseismic coupling [Stevens and Avouac, 2015]. Other parts of
the orogen should be reassessed as it is most probable that the entire Himalayan megathrust is able to gen-
erate major earthquakes.
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