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a Géosciences Montpellier, CNRS-UMR 5243, Université Montpellier 2, 34000 Montpellier, France
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a b s t r a c t

In this paper we present a new local remeshing algorithm that is dedicated to the problem of erosion in

finite element models whose grid follows the movement of the free surface. The method, which we name

Surface Lagrangian Remeshing (SLR), is adapted to 2D Lagrangian models which couple surface erosion

with deformation of Earth materials. The remeshing procedure preserves nodes defining the surface

submitted to erosion and removes nodes belonging to surface elements whose internal angles or area is

critically low. This algorithm is ideally suited to track long term surface evolution. To validate the method

we perform a set of numerical tests, using triangular finite elements, which compare the results obtained

with the SLR algorithm with global remeshing and with analytical results. The results show good

agreements with analytical solutions. Interpolation errors associated with remeshing are generated

locally and numerical diffusion is restricted to the remeshed domain itself. In addition this method is

computationally costless compared to classical global remeshing algorithm. We propose to couple the SLR

method with the Dynamical Lagrangian Remeshing (DLR) algorithm to enable local remeshing only of

Lagrangian models coupling large deformation of Earth materials with large erosion.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last two decades studies based on numerical modelling
have demonstrated that the interaction of surface erosion and
deformation of continental lithosphere is a key process in orogenic
evolution (e.g., Avouac and Burov, 1996; Beaumont et al., 1992;
Godard et al., 2009; Willett, 1999). These numerical approaches are
commonly based on both an erosion law controlling the evolution
of surface topography and a thermo-mechanical finite element
model (FEM) that accounts for lithospheric deformation. However,
as previously mentioned (e.g., Kurfeß and Heidbach, 2009) the
major limitation of coupled models is that the FEM based on a
Lagrangian formulation cannot perform simulations over very long
time scales, due to the development of large cumulative deforma-
tion. Finite element methods are based on the spatial discretization
of tensor and scalar values onto a finite number of elements. In the
Lagrangian formulation the shape and location of these elements
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evolve with the deformation within the model together with
erosion processes at the top surface. The quality of the numerical
solution is closely linked to the shape functions used to interpolate
discrete node quantities into continuous field variables. Shape
functions are geometrically defined and as a consequence cumu-
lated deformation of elements over long time scales leads to a
decrease in the quality of interpolation.

To overcome this major limitation most of the numerical
approaches use remeshing algorithms to work on undistorted
and well focused mesh. Remeshing is then associated with transfer
of parameter fields between two subsequent meshes. This requires
interpolation, which is a common source of numerical diffusion. In
geosciences remeshing is commonly used for the study of crack
propagation (e.g., Belytschko and Black, 1999), flow description
(e.g., Hwang and Wu, 1992) or long-time scale lithospheric
deformation (e.g., Godard et al., 2009; Yamato et al., 2007). Most
of these algorithms perform global remeshing, which requires
transferring the field variables over the entire model.

To reduce numerical diffusion associated with the remeshing
procedure many numerical strategies have been developed. For
example Yamato et al. (2007) use an array of additional passive
markers to interpolate field variables. Fullsack (1995) has devel-
oped a FEM based on the arbitrary Lagrangian–Eulerian (ALE)
formulation. In this formulation the finite element calculation is
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not performed on the tracking mesh (a Lagrangian one) but rather
on an Eulerian one. Even if those methods (passive markers and
ALE) are efficient to reduce interpolation errors, they lead to
expensive CPU time-cost or require large amounts of memory.
Yet note that ALE methods can be enhanced by the use of adaptative
grid based on an octree division of space, which enables to
interpolate field variables only for the appropriate elements
(Braun et al., 2008; Thieulot et al., 2008).

An alternative approach is local remeshing algorithms, where
only the distorted elements and their neighbours are remeshed.
The additional benefit of these algorithms are that they reduce CPU
time cost associated with remeshing. Braun and Sambridge (1994)
propose the local Dynamical Lagrangian Remeshing (DLR) algo-
rithm to deal with the distortion of the triangular elements of
Lagrangian FEM. This method is suited to address high deformation
problems. However, it is not adapted to numerical modelling with
intense erosion, in which mass removal by erosion not only affects
the surface elements shape but also reduces their area.

In this paper, using the lagrangian FEM code ADELI (Hassani
et al., 1997) we propose a complementary approach called Surface
Lagrangian Remeshing (SLR hereinafter) algorithm to deal with the
distortion and area decrease of surface elements by erosion. In
what follows after a detailed presentation and tests of the SLR
method, we will focus on the application of this method to study
classical surface erosion laws. Coupled with the DLR method this
local remeshing technique can be applied to investigate a wide set
of geodynamical problems including interactions between defor-
mation and erosion.
2. Local remeshing algorithms

2.1. Coupling erosion and deformation: remeshing approach

Compared to global remeshing, local remeshing only modifies a
small area close to the distorted elements. The Dynamical Lagran-
gian Remeshing (DLR) algorithm (Braun and Sambridge, 1994) was
developed to deal with distortion by deformation of the triangular
elements of Lagrangian FEM. DLR consists in a permanent recon-
nection of nodes with their closer neighbours by a Delaunay
triangulation (Fig. 1). It forces elements to respect the Delaunay
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Fig. 1. Description of the geometric principle of the SLR (top) and DLR (bottom) methods

angle or one area of a triangular element of the surface becomes critical; after erosion, the

Ac¼0.5 is the critical area ratio. A remeshing criterion on the internal angles of the surface

critical. Nodes of the critical triangle, which are not at surface, are removed from the m

reconnected by a Delaunay triangulation algorithm. After remeshing, the old mesh is ind

Delaunay condition becomes false, i.e. the strict interior of the circumcircle of each trian

neighbours, the Delaunay condition becomes true again.
condition on the grid: the strict interior of the circumcircle of each
triangular element contains no node. As previously mentioned this
method is very efficient to model high deformation problems, but it
cannot be applied to remesh surface elements affected by erosion.
Here we propose the SLR method as a complementary algorithm to
the DLR method and dedicated to surface erosion. In depth the DLR
algorithm deals with the remeshing of highly deformed non-
Delaunay elements (see Fig. 1 bottom image) whereas the SLR
algorithm enables to keep unflatened elements at surface (see Fig. 1
top image). From now on we focus only our study on the SLR
method. We refer the reader to Braun and Sambridge (1994) for
further details on the DLR method.

2.2. Surface Lagrangian Remeshing (SLR) algorithm

The main difficulty which must be solved by the SLR method
consists in the local remeshing of deformed surface elements
without altering the topographic profile itself. This latter is a
critically important feature of the models investigating coupling
between surface processes and tectonics. Thus, in the SLR algorithm
only the internal nodes, i.e. the nodes that do not belong to the
surface, are concerned by remeshing.

In our approach we use triangular elements initially generated
by the Delaunay triangulation. We define the critical elements in
respect to remeshing, as the elements which exhibit at least one
small internal angle aint oacri or a small area A=AinioAcri. Two
geometrical conditions apply on the critical angle acri: (1) tanðacriÞ

must be greater than the ratio of the maximum erosion Dhmax

during one time step, over the minimum vertical height of the
surface elements hmin,

tanðacriÞ4Dhmax=hmin: ð1Þ

(2) acri must be smaller than 251 to avoid mesh destruction. The
critical area Acri is a secondary criterion, which preserves the
simulations from both frequent remeshing and major area decrease
of surface elements. In the following the critical angle acri and area
Acri are set to 181 and 50% of the initial area, respectively.

The SLR method is applied to the top surface of the model and
consists of three stages: (1) internal nodes sharing at least one
connection with surface nodes and belonging to critical elements
are removed from the mesh. (2) Next, critical elements and their
Remeshing
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(Braun and Sambridge, 1994). Top image: the initial mesh is eroded until at least one

area A of the filled triangle is critical, compared to its initial value Ai, A=Ai oAc, where

triangles is also defined. A triangle with at least one internal angle below 181becomes

esh. Triangles that include these removed nodes are deleted. Remaining nodes are

icated by gray lines. Bottom image: the initial mesh is deformed in depth until the

gular element contains no node. After reconnection of these nodes to their closest
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direct neighbours are also deleted from the mesh and replaced by
new triangular elements following a Delaunay triangulation algo-
rithm (Renka, 1996). (3) Finally, tensor and scalar values defined by
elements are interpolated from the old to the new mesh. We use a
simple conservative interpolation scheme, in which each new
element value Vnew is equal to the spatial integral of the old elements
value Vold on the new element domain O divided by the area of O,

Vnew ¼

R
OVoldðoÞ doR

O do
, ð2Þ

where do is an infinitesimal area.
The SLR algorithm presents three main advantages: (1) by

remeshing only critical and highly deformed surface elements,
SLR method generates numerical errors only on the local remeshed
domain. (2) Nodal values are not interpolated during remeshing as
there is no redistribution of nodes position during remeshing.
(3) The combination of nodes defining the surface is kept constant
and thus it does not artificially introduce any surface profile
change, which would be a major drawback when considering
geomorphological issues.
3. Validation of the SLR method

3.1. SLR and tracking of the surface

To check the ability of the SLR method to preserve surface profile
during remeshing, simple models of erosion using SLR are com-
pared with corresponding analytical solutions (Fig. 2). The numer-
ical solutions are obtained with the FEM code ADELI (Hassani et al.,
1997). These experiments of comparison consist in eroding com-
pletely, until peneplanation at t¼ t%, a triangular-shaped mountain
with a basal width of 100 km and a summit height of 3 km lying
over a rigid and incompressible medium. The top surface is
subjected to different erosion laws: erosion by diffusion of eleva-
tion @h=@t¼ K@2h=@x2 (Avouac and Burov, 1996) or erosion propor-
tional to slope @h=@t¼ K@h=@x (Beaumont et al., 2001), where K is
the coefficient of diffusion and a coefficient of denudation, respec-
tively. Analytical solutions are given in Appendix A.

In both cases the numerical results obtained with the SLR
method are in very good agreements with the analytical solutions
(to the order of 1 cm compared to 3 km of cumulated erosion, see
Fig. 2) while � 200 remeshings were performed in each experi-
ment. However, in the slope-dependent erosion law, the numerical
solution progressively diverges from the analytical one at the foot
of the mountain where the topographic slope varies abruptly. This
is due to diffusion of the numerical solution, which is inherent to
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Fig. 2. Time evolution of the surface of the model for different erosion laws plotted at each

K¼4.0�10�10 m s�1 and (b) erosion by diffusion with K¼3.0�10�5 m2 s�1. Results fr

solution. Note that in (b) only the erosive component of the diffusion law is simulated.
the upwind-differencing numerical scheme used for numerically
solving the surface slope. In these two experiments, the � 200 SLR
phases, which were necessary to reach peneplanation, have not
significantly altered the evolution of the surface.

3.2. Comparison between SLR and global remeshing

To further quantify the robustness of the SLR method, we
perform a set of tests, which compare the results obtained with
SLR and a global remeshing method using the same interpolation
scheme. The set-up of the model (Fig. 3) used here is similar to the
previous one, apart from the rheology which is elastic and is
defined by a Young modulus, E¼40 GPa and Poisson’s ratio
n¼ 0:25. Each component of the elastic strain eij is a function of
the stress tensor r, through Hooke’s law,

eij ¼
1þn

E
sij�

n
E

trace ðrÞdij: ð3Þ

The boundaries of the model are fixed except the top surface which
is subjected to a more realistic erosion law and follows a classical
shear-stress fluvial incision law (Gilbert, 1877; Howard and Kerby,
1983; Howard et al., 1994; Lavé and Avouac, 2001). This approach is
not fully compatible with mechanical modeling, which requires to
consider mean elevation as the pertinent upper boundary variable
(Godard et al., 2006). We refer the reader to Lavé (2005) and Willett
(2010) for further details on how to incorporate erosion in
geodynamic models.

Time evolution of the river elevation h is expressed as follow:

@h=@t¼ KPgAbð@h=@xÞa, ð4Þ

where K is a coefficient related to bedrock erodibility, P the mean
precipitation rate of the watershed considered, A the watershed area
and a, b, g, some exponents, set equal to 0.7, 0.27 and 0.33,
respectively (Godard et al., 2006; Lavé and Avouac, 2001). Area is
deduced from Hack’s law, A¼ka Lh, where L is the length of the river, ka

and h two empirical constants (Hack, 1957). The bedrock erodibility
and precipitation rate are set to K¼6.4�10�10 m0.13 s�0.67 and
to P¼1 m a�1, respectively. The model lasts 10 Ma with 104 time
steps. This setting enables a complete peneplanation of the topo-
graphy after � 6 Ma.

The final stage of these numerical experiments (peneplanation)
is compared to the state of strain of an unremeshed reference
model, for which erosion is simulated by an instantaneous removal
of the mountain load whit no remeshing. As the plate is purely
elastic there should be no difference between this modelling and
the global or local remeshed numerical experiments with progres-
sive erosion.
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Fig. 3. Results of the numerical experiments comparing local and global remeshing with the reference one. (a) Set-up of the different experiments. The medium A is submitted

either to erosion (SLR, Global) or to instantaneous removal (Reference), while the elastic medium B boundary conditions remain constant in the different experiments. The

model counts approximatively 6000 elements. Bulk strain field obtained at 10 Ma for the reference model (b), with the Surface Lagrangian Remeshing (SLR) algorithm (c) and

with global remeshing (d). Also are represented the differences of the bulk strain field between (e) the SLR experiment and the reference one, and between (f) the Global and the

reference ones. Note that SLR produces errors localized only at the surface of the model, while errors produced by global remeshing are wide spreaded across the simulation

domain.
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In a first approximation both approaches using global and local
remeshing algorithms give concordant results showing a localized
deformation zone at depth bellow the initially high elevated area
(Fig. 3). However, a more detailed analysis of the strain pattern and a
comparison with the reference model results reveal some major
differences including a zone of intense deformation ðo�6� 10�4

Þ

at 50–90 km depth obtained in the global remeshed experiment
only. The results obtained with the SLR method appear to be
significantly closer to the reference model, apart from the top
surface where repetitive local remeshing has lead to numerical
errors. This illustrates the role of the remeshed domain size: global
remeshing interpolate tensor and scalar values defined by elements
over the entire model, while SLR interpolate these values only in the
remeshed area. Thus SLR prevents the development of widespread
numerical diffusion that is inherent to global remeshing methods.

By producing numerical errors, remeshing can affect the
stability of the simulation. Here we use the FEM code ADELI which
uses an iterative explicit approach and solves Newton’s second law
to obtain the static solution of a steady-state modelling (see a
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Fig. 5. Loglog plot of the mean CPU time (s) needed to achieve one remeshing phase (a), a

remeshing (filled circles) methods as a function of the number of elements of the mod
detailed description in Appendix B). The convergence of the
algorithm is thus associated with the minimization of unbalanced
forces (Eq. (16)), which can be expressed through the inertial ratio,

Ir ¼
JFeþFiJ

JFeJþJFiJ
, ð5Þ

where Fe and Fi are the external and internal nodal forces acting on
the system, respectively. This parameter can thus be used as a
proxy of the numerical stability during an experiment: a decrease
(increase) of Ir can be associated to a numerical stability increase
(decrease) with time.

For both methods (SLR and global remeshing) we obtain an
increase in numerical stability with time affected by large pulses of
Ir increase associated with remeshing phases (Fig. 4). Our results
suggest (1) a lower destabilisation effect due to the SLR method: the
inertial ratio exhibits peaks of twice higher amplitude during global
remeshing than during SLR and (2) a more frequent remeshing with
the SLR method: only six global remeshing are needed when 44 SLR
are required. These two features can be easily explained by the
differences between the two remeshing methods. Global remesh-
ing, contrary to SLR, completely reorganizes the distribution of
nodes and in particular those close to the surface. This enables to
space out the remeshing phases, but increases the numerical
diffusion, due to interpolation on a greater amount of elements.

3.3. Remeshing and computational cost

In the previous experiments our model is meshed with � 6000
elements. The cumulated CPU time for the remeshing and sub-
sequent interpolation is � 1:0 s, while it is equal to � 400 s for
global remeshing.

To test the efficiency of the SLR method in a more general way
we compare the CPU time associated with local and global
remeshing for models with a number of elements between 500
and 20 000 (Fig. 5). Our results show that the CPU time for each
remeshing phase increases proportionally as the square of the
number of elements for global remeshing, whereas it is almost
constant for SLR. Accurate simulations require a large amount of
elements, which can easily exceed 104. In this case each global
remeshing phase CPU time largely exceed 100 s. Simultaneously
the number of remeshing phases increases proportionally with the
number of elements. These two combined effects favour the use of
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the SLR method, which requires only � 5 s of cumulated remeshing
time for 20 000 elements, while � 19 h are needed with global
remeshing.

3.4. Remeshing with the dynamic relaxation method

ADELI employs the dynamic relaxation (DR) method for time
discretization (Underwood, 1983). As it is an explicit numerical
scheme, the associated FEM is conditionally stable Appendix B.
Thus we need to check that the errors introduced during remeshing
do not lead to numerical divergence. This is likely to occur when the
changes in Ir due to each remeshing are cumulated with time. To
avoid this accumulation of errors, the time period between each
remeshing Dtrmesh must be greater than the numerical relaxation
time tdamp needed to restore a level of Ir prior remeshing. For
instance in the experiment with � 6000 elements and for the SLR
method tdamp is equal to � 50 time steps. The evolution of Ir shows
a global decrease except between 1000 and 2000 time steps, where
Dtrmeshotdamp (Fig. 4).

Furthermore if we use a visco-elastic rheology instead of the
elastic one used in the models presented in this paper, the time
between remeshing events needs to be greater than trelax the
viscous relaxation time,

trelax ¼
minðmeff Þ

E
, ð6Þ

where minðmeff Þ is the minimum effective viscosity of the medium
considered.
4. Application and limitations

4.1. River incision and rock erodibility

To further assess the abilities and limitations of the SLR
algorithm, we apply it to model erosion by river incision
(Eq. (4)). The set-up of the model is the same as in the previous
section. In the two experiments presented here (Fig. 6) the
coefficient of bedrock erodibility is either homogeneous or pre-
sents an abrupt contrast, i.e. the borders of the mountain are five
times more erodible than its center. The SLR algorithm is successful
to deal with both and manages to keep constant the number of
nodes setting the surface and subsequently the horizontal resolu-
tion. Detailed investigations are now required to deepen our
understanding of rock erodibility in the interplay between erosion
and tectonics.

4.2. Limitations

As a consequence the vertical resolution decreases where the
erosion rate exhibits a spatial gradient. Here it happens at the
transition zone between high and low erodibility (Fig. 6b).

Another limitation, which is not illustrated here, is the singu-
larity that represents, for the SLR method, a single element forming
an acute triangular mountain summit. In our models this singu-
larity mainly occurs if the slope of the surface is greater than 451 on
both sides of the mountain summit. In this setting it is impossible
for the SLR to remesh the element forming the summit, as all its
nodes belong to the surface. However, this singularity can be
avoided by swapping the basal face of such a triangular element
with its direct neighbour.

When considering surface processes, the main limitation of the
SLR algorithm is that it requires to be modified to allow modelling
of sedimentation law. For instance we were not able to simulate the
sedimentation part of the diffusion law using SLR (Fig. 2). Con-
versely SLR is not adapted to extensional settings. Both sedimenta-
tion and extension would rather require to add nodes where
stretching of surface elements is important (small internal angle
or large area).
5. Conclusion

Our study has demonstrated the efficiency of the local remeshing
algorithm proposed in this paper. Compared to global remeshing,
the SLR method is computationally costless, and produces only
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localized numerical errors, as interpolation occurs locally on the
remeshed elements. Since the nodes of the free surface of the model
are preserved throughout the simulation, SLR is an appropriate
method in the context of numerical modelling with a particular
interest in geomorphology. The SLR is thus a robust remeshing
algorithm that enables to simulate erosion over long time scale in
FEM modelling. It was successfully applied to study river erosion
over an abrupt contrast of rock erodibility.

However, it is not suited for studies with both erosion and
sedimentation. The applications of the SLR is not limited to 2D

models using triangular elements. Its fundamental principles can
be easily transposed to 3D FEM using tetrahedral elements.

Coupled with DLR, these local remeshing algorithms represent
both a prospect for FEM based on Lagrangian formulation and an
alternative to ALE and passive markers methods by their abilities to
deal with both large deformation and high erosion (e.g., Braun et al.,
2008; Fullsack, 1995; Thieulot et al., 2008; Yamato et al., 2007). The
coupled SLR–DLR remeshing algorithm has the potential to provide
an efficient way to study a wide range of complex geological
settings, which require to couple deformation of Earth materials
with surface erosion (e.g., Godard et al., 2006; Kaus et al., 2008;
Willett, 1999).
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Appendix A. Analytical solutions of erosion laws

Let us consider the elevation of the right side of a triangular
mountain belt initially defined as h(x,t¼0)¼ � (H/l) x + H, where H

is the elevation of the summit and l is the horizontal distance
between the summit and the foot of the mountain. Analytical
evolution of this mountain belt h(x,t) submitted to a slope-
dependent erosion law,

@hðx,tÞ

@t
¼�K

@hðx,tÞ

@x
, ð7Þ

is given by

hðx,tÞ ¼ hðx,t¼ 0Þ�K
H

L
t, ð8Þ

where K is a coefficient of denudation.
Analytical evolution of the same mountain belt h(x,t) submitted

to diffusion of elevation,

@hðx,tÞ

@t
¼ K

@2hðx,tÞ

@x2
, ð9Þ

with the boundary conditions,

hðx¼ l,tÞ ¼ 0, ð10Þ

@hðx¼ 0,tÞ=@x¼ 0, ð11Þ

is given by

hðx,tÞ ¼

Z l

0
hðz,0ÞGðx,t,zÞ dz, ð12Þ

where

Gðx,t,zÞ ¼
2

l

Xl

n ¼ 0

cos
pð2nþ1Þ

2l
x

� �
cos

pð2nþ1Þ

2l
z

� �
exp �

Kp2ð2nþ1Þ2

4l2
t

 !
,

ð13Þ
with K the coefficient of diffusion. The numerical integration of
Eq. (12) was carried out by means of a trapezoidal rule.
Appendix B. Numerical method

Finite element method deduces the nodal displacement U by
solving the force-balance equation which results for long-term
geodynamic problems in the following system of simultaneous
equations:

Kstiff U ¼ Fe, ð14Þ

where Kstiff is the stiffness matrix and Fe the external nodal forces.
Two methodologies are commonly used to solve this problem.
Implicit methods in which the static system (14) is linearized into a
large system of algebraic equation. These methods are computa-
tionally expensive. The finite element code ADELI (Hassani et al.,
1997) used in this study rather employs Dynamic Relaxation (DR)
to solve previous equation (Underwood, 1983). This is an explicit
iterative procedure, in which the static system (Eq. (14)) is
transferred to an artificial dynamic space by adding artificial inertia
and damping forces,

M €UþC _UþKstiff U ¼ Fe, ð15Þ

where M is a fictious mass matrix chosen in a diagonal form, and C a
fictious damping matrix. The steady state solution of this artificial
dynamic system (Eq. (15)) is the solution of the static system
(Eq. (14)). It is reached when the inertial regularizing term M €U is
negligible compared to the forces involved in the problem. Invert-
ing previous equation gives an expression of the nodal acceleration,

€U ¼M�1ðFe�Fi�C _UÞ, ð16Þ

with Fi¼KstiffU the internal nodal forces calculated from the
integration of the constitutive law (Eq. (3)). Velocity and displace-
ment are then computed by numerical integration of acceleration.
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Lavé, J., 2005. Analytic solution of the mean elevation of a watershed dominated by
fluvial incision and hillslope landslides. Geophysical Research Letters 32 (11),
L11403. doi:10.1029/2005GL022482.
Renka, R.J., 1996. ALGORITHM 751. TRIPACK: constrained two-dimensional Delau-
nay triangulation package. ACM Transactions on Mathematical Software 22 (1),
1–8.

Thieulot, C., Fullsack, P., Braun, J., 2008. Adaptative octree-based finite element
analysis of two- and three-dimensional indentation problems. Journal of
Geophysical Research 113 (B12), B12207. doi:10.1029/2008JB005591.

Underwood, P., 1983. Dynamic relaxation. In: Hughes, T.J.R., Belytschko, T.B. (Eds.),
Computational Methods for Transient Analysis. Elsevier Science Publisher B.V.,
Netherlands, pp. 245–265.

Willett, S.D., 1999. Orogeny and orography: the effects of erosion on the structure of
mountain belts. Journal of Geophysical Research 104 (B12), 28,957–28,981.

Willett, S.D., 2010. Erosion on a line. Tectonophysics 484, 168–180.
Yamato, P., Agard, P., Burov, E., Le Pourhiet, L., Jolivet, L., Tiberi, C., 2007. Burial

and exhumation in a subduction wedge: mutual constraints from thermo-
mechanical modeling and natural P-T-t data (Schistes Lustres western
Alps). Journal of Geophysical Research 112 (B7), B07410. doi:10.1029/2006
JB004441.

dx.doi.org/10.1029/2005GL022482.3d
dx.doi.org/10.1029/2008JB005591.3d
dx.doi.org/10.1029/2006JB004441.3d
dx.doi.org/10.1029/2006JB004441.3d

	Surface Lagrangian Remeshing: A new tool for studying long term evolution of continental lithosphere from 2D numerical...
	Introduction
	Local remeshing algorithms
	Coupling erosion and deformation: remeshing approach
	Surface Lagrangian Remeshing (SLR) algorithm

	Validation of the SLR method
	SLR and tracking of the surface
	Comparison between SLR and global remeshing
	Remeshing and computational cost
	Remeshing with the dynamic relaxation method

	Application and limitations
	River incision and rock erodibility
	Limitations

	Conclusion
	Acknowledgements
	Analytical solutions of erosion laws
	Numerical method
	References




